
PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 1 of 8

In this problem, you will be asked questions pertaining to CAD techniques for the veri-
fication of digital circuits. A combinational circuit, such as the arithmetic-logic unit (ALU)
of a microprocessor, might have 256 inputs. Conceptually, such a circuit performs a map-
ping from a space of 2256 Boolean input values to Boolean output values. A truth table
representing 2256 input assignments is inconceivable; verifying the behavior of such a circuit
would seem like an intractable problem. Digital circuit designers have succeeded in their
endeavor with data structures such as binary decision diagrams and implicit techniques such
as Boolean satisfiability (SAT).

Verification Problem

Suppose that you’re newly hired at Intel and you think that you’ve come up with a better
design for the ALU of their latest generation of microprocessors. You’re convinced that your
design is correct but you had better be sure. How can you check?

Call Intel’s existing design Circuit A and your new design Circuit B. Suppose, for the
purposes of this exam, that Circuits A and B are those shown in Figures 1(a) and 1(b),
respectively. Call the Boolean functions computed by these circuits fA and fB, respectively.

(a) Intel’s existing design. (b) Your new design.

Figure 1: Circuits to be verified.



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 2 of 8

1. Explicit Techniques (10 points)

Show, by evaluating fA and fB for all input combinations, that the two functions are
equivalent.

Solution

W X Y Z fA fB
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 1
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

2. Algebraic Techniques (10 points)

Write algebraic expressions for fA and fB. Show, algebraically, that the two functions
are equivalent.

Solution

fA = XZ + XY + X̄Y

fB = XZ + WY + W̄Y

fA = XZ + XY + X̄Y

= XZ + XY (W + W̄ ) + X̄Y (W + W̄ )

= XZ + WXY + W̄XY + WX̄Y + W̄ X̄Y

= XZ + WY (X + X̄) + W̄Y (X + X̄)

= XZ + WY + W̄Y

= fB



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 3 of 8

3. Manipulation with XOR (15 points)

An useful representation in circuit verification is based on the AND and exclusive-OR
(XOR) operations (with no negations). We will denote the XOR operation with ⊕.
This representation is canonical: if we multiply out all parentheses, cancel pairs of
identical terms, and sort the product terms, the resulting expression is unique. Ac-
cordingly, we’ll call the representation XNF, for XOR Normal Form. (This isn’t a
standard term for the representation. It is sometimes known as the Reed-Muller form).
For instance, for the function

f = a + b

the XNF representation is
f = a⊕ b⊕ ab.

For the function
g = x̄1x̄2x̄3 + x̄1x̄2x3 + x̄1x2x̄3,

the XNF representation is

g = 1 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3.

The XNF representation has distinct advantages when manipulating expressions al-
gebraically. Since it is canonical, we need not concern ourselves with simplifying the
expressions, as we would working with sum-of-products or products-of-sums represen-
tations.

Problem

Show that the functions fA and fB from Question 2 are equivalent by putting them
both in XNF.

Solution
fA = fB = Y ⊕XZ ⊕XZY

4. Implicit Techniques (15 points)

Explain how, conceptually, you can create a new circuit that will help you with the
task of proving that Circuits A and B are equivalent. Specifically, how can you tie the
outputs of the circuits together to create a new circuit that computes an output that is
identically 0 (i.e., 0 for all input combinations) if and only if the two circuits compute
the same Boolean function? Indicate what logical function should replace the question
mark in Figure 2. Call the function implemented by the new circuit g.



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 4 of 8

x1
fA

Circuit A
x2

xn

.

.

.

x1

fB

Circuit B

x2

xn

.

.

.

? g

Figure 2: A conceptual circuit for verifying whether Circuits A and B are equivalent.

x1
fA

Circuit A
x2

xn

.

.

.

x1

fB

Circuit B

x2

xn

.

.

.

g

XOR

Figure 3: Solution for Question 4.



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 5 of 8

5. Binary Decision Diagrams (25 points)

First proposed in 1959 by Lee, binary decision diagrams (BDDs) were popularized
in 1986 through a seminal paper by Bryant. A BDD consists of a directed graph in
which nodes either have associated input variables or else are designated as a constant
nodes (“0” or “1”). To evaluate a function one begins at a designated source node and
follows a path dictated by the values of the variables until one arrives at one of the two
constant nodes. The value of this constant node specifies the value of the function. An
example is shown in Figure 4. The BDD in the figure represents the function

f = x1(x2 + x3).

x
1

f

0

1

10

x
2

x
3

Figure 4: A binary decision diagram (BDD).

Although comparable in size to a truth table in the worst case, BDDs are surprisingly
compact for many of the Boolean functions encountered in practice. This is due to
the fact that BDDs can often be reduced in size by collapsing redundant nodes and
merging equivalent nodes.

As with the XNF representation, the advantage of BDDs is that, for a given variable
ordering, the representation is canonical.

Problem

Draw reduced BDDs for the function fA = fB in Question 2. What will the reduced
BDD be for the function g in Question 4?



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 6 of 8

Solution

f_A:

if X

if Y

1

else if !Y

Z

endif Y

else if !X

Y

endif X

g:

zero



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 7 of 8

6. Boolean Satisfiability (25 points)

In our verification problem, the question that we are trying to answer – namely, whether
the circuits are equivalent – has an affirmative answer if equivalence holds for all
possible input assignments. It has a negative answer if equivalence does not hold for
any input assignment. So-called SAT-based techniques, based on heuristic solutions to
the Boolean satisfiability problem, can be used to answer questions that fit this mold.
In theory, such algorithms can take time that is exponential in the number of variables
to complete. In practice, they have shown themselves to be remarkably efficient.

SAT-based analysis begins with a circuit structure and proceeds by packaging the
Boolean function that it computes in conjunctive normal form (CNF). This is passed
to heuristic algorithms known as SAT solvers. If the solver returns “UNSAT,” this
means that there is no satisfying assignment to the formula. Otherwise, the solver
returns “SAT” along with a satisfying assignment. For instance, consider the circuit
in Figure 5. The corresponding CNF formula is:

(x̄2 + y)(x̄3 + y)(x2 + x3 + ȳ)(x1 + h̄)(y + h̄)(x̄1 + ȳ + h)(h).

The solver would return SAT. A satisfying assignment for this formula is x1 = x2 =
x3 = y = h = 1.

x2

x3

x1

h

y

Figure 5: A circuit illustrating Boolean satisfiability.

Based on the construct in Figure 2, write a CNF formula for the question: are Circuits
A and B equivalent?



PhD Preliminary Written Exam
Oct. 25, 2014

Problem 13
Computer-Aided Design Problem & Solution Page 8 of 8

Solution

Label the AND gate outputs y1, y2, y3, and z1, z2, z3. Label the OR gate outputs fA
and fB. Label the XOR gate output g. Define

c1 = (X + ȳ1)(Z + ȳ1)(X̄ + Z̄ + y1)

c2 = (X + ȳ2)(Y + ȳ2)(X + Y + y2)

c3 = (X̄ + ȳ3)(Y + ȳ3)(X + Ȳ + y3)

c = (ȳ1 + fA)(ȳ2 + fA)(ȳ3 + fA)(y1 + y2 + y3 + f̄A)

d1 = (X + z̄1)(Z + z̄1)(X̄ + Z̄ + z1)

d2 = (W + z̄2)(Y + z̄2)(W̄ + Ȳ + z2)

d3 = (W̄ + z̄3)(Y + z̄3)(W + Ȳ + z3)

d = (z̄1 + fB)(z̄2 + fB)(z̄3 + fB)(z1 + z2 + z3 + f̄b)

svne = (f̄A + fB + g)(fA + f̄B + g)(fA + fB + ḡ)(f̄A + f̄B + ḡ).

The CNF formula is

(c1) (c2) (c3) (c) (d1) (d2) (d3) (d) (e) (g)


